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Chapter 1

Inner Product Spaces

Defining properties and examples

1.1 Definition. An inner product for a complex vector space V' is a func-
tion (-,-) : V. x V — C which is sesqui-linear and positive definite. This
means, it has the following properties:

1. (v,w) = (w,v) for allv,weV;
2. {cv,w) = c(vk,w) for allv,w €V and c € C;
3. (u+v,w) = (u,w) + (v,w) for all u,v,w e V;
4. {(v,v) >0 forallveV, v#0.

When a vector space V' has been equipped with an inner product, we also refer
to it as an inner product space. We also define the norm |jv|| = +/(v,v)
for allv € V. A sequence {vp}neny converges to a vector w in norm if
im0 [|ln — wl| = 0.

1.2 Ezample. The vector space of all trigonometric polynomials, given by
the set of functions

V= { :[0,1] — C,p(t) = Z ™ N eN, all ¢ € (C} (1.1)
k=—N

can be equipped with the inner product

1 _—
(@,m) :/0 v(t)w(t) dt . (1.2)



The sesqui-linearity (Properties 1 to 3) follows from the linearity of the
integral. To check the positive definiteness, we compute the square norm for
a trigonometric polynomial v(t) = SN cre2™** with degree 2N +1 € N,

1
@)= [ WP
0
1 N . N .
=/ Z cke2mkt Z C—le—2mlt dt
0 fp=—n

I=—N

N 1 ) N
— Z ck—c—l-/ eQm(k-—-l)t dt = Z [Ck|2 .
0 k=—N

kl=—N

The last sum is zero if and only if ¢y, =0 for all k € {-N,-N+1,...,N —
1, N}, which means that v(¢) =0 for all ¢t € [0, 1].

The example of trigonometric polynomials is a vector space that does
not have a finite basis, that is, a finite, linearly independent set for which
finite linear combinations can produce any vector in V. This is a simple
consequence of the fact that a finite set of trigonometric polynomials has a
maximal degree. Any monomial with a higher degree cannot be obtained
from a linear combination within this set.

1.8 Ezercise. Recall the Cauchy property of sequences. A Cauchy sequence
{Un}nen in a normed vector space satisfies that for any e > 0 there is an
N € N such that for all m,n > N, |[v, — up|| < €. Show that the space of
trigonometric polynomials is not closed, that is, there are sequences of poly-
nomials which have the Cauchy property with respect to the norm induced
by the inner product, but they do not converge to a polynomial.

To remedy this problem, one could identify each polynomial with the
(finite) sequence of its coefficients, and define an inner product in terms of
the coefficients. This way, polynomials are embedded in the larger space of
square-summable sequences. We will show in Exercise 1.10 that all Cauchy
sequences converge in this larger space.

1.4 Ezample. Let 1(Z) be the vector space of all sequences (Zn)nez with
S8 oo |Zn|? < co. For z,y € 13(Z), we define

[eo]
- . (z,9) = > znTn-

n=—oo

We also denote ||z|| = +/(z, z).



To see that the inner product is indeed defined on all pairs of vectors
from 12(Z), we note that for z,y € [2(Z), the series for the inner product is
term by term dominated by an absolutely convergent series,

[e ]
Z TrYk

k=—00

x>

<3l < 3 (Bl + 2l

k=—00 k=—00

Thinking of a trigonometric polynomial as a sequence of coefficients,
finitely many of which are nonzero, motivates to consider ‘functions’ cor-
responding to sequences of coefficients which are merely square-summable.
Such functions could then be thought of as limits of Cauchy sequences of
trigonometric polynomials (obtained from truncating the coefficients). The
question of whether these limits can indeed be interpreted as functions, and
in which precise sense they are limits of trigonometric polynomials is the cen-
tral theme of the next chapter on Fourier series. Writing the inner product
for these limits in the same form as for trigonometric polynomials motivates
the informal definition of L2([0, 1]), the space of square-integrable functions
on [0,1]. We can make this definition more general by using complex expo-
nentials of the form ¢2mint/(b=a) - and obtain the space of square-integrable
functions on an interval [a, b].

1.5 Definition. Let a,b € R, a < b, then we define the vector space of
square-integrable functions

L?([a, b)) = { f:la,b = C, flt) = i cpe?™ Rt/ (b=a) ¢ ¢ 12(2)}

k=—c0

and for two such square-integrable functions f and g, we write

b
(f9) = / Fe@dt.

1.6 Remark. This cannot define an inner product for functions, because if
fla) =1, f(t) =0 for all a < t < b, then we have (f,f) = 0 but f is
not the zero function! However, one can show that the inner product space
obtained from Cauchy sequences of trigonometric polynomials amounts to
identifying two functions when they differ on a set that does not contribute
in an integral. In this case, we say that the two functions are equal almost
everywhere.

1.7 E}ample. Sets that do not contribute in integrals are those that can be
covered with an at most countable number of intervals having a total length
that can be made arbitrarily small.



One example is the set Q containing all rational numbers. Since these
numbers are countable, we can enumerate them with a sequence {gn }nen-
Given ¢ > 0, choosing intervals of length 27" centered at each g, covers the
rationals, and the total length of all intervals is > 22, €/2" = e. In fact, this
construction applies to any countable set, which shows that none of them
contribute in integrals.

Another example is the so-called Cantor set. It is given as an intersection
of countably many sets obtained from an iterative procedure. The first
set is C; = [0,1]. The next is obtained by removing the middle third,
Cy = [0,1/3]U[2/3,1]. At each step, we remove the middle third. The total
length of the intervals contained in C,, is thus (2/3)"~!, which converges to
zero. Each number in C = NS ;Cy, is uniquely determined by the infinite
sequence of binary decisions keeping track of which “third” (left or right)
contains the number when passing from Cp_1 to Cp,. Therefore, the set C
is not countable, as proved by Cantor’s diagonal argument. If they were,
we could write the binary sequences underneath each other, and then create
another sequence by picking the numbers on the diagonal. Switching all “0”s
and “1”s then creates a sequence that is different from all of the enumerated
ones, thus the enumeration cannot contain all binary sequences.

The space of sequences can be thought of as the space of digitized signals,
given by coefficients stored in a computer. The space of square-integrable
functions, on the other hand, can be thought of as the space of analog
signals. By identifying trigonometric polynomials with their sequences of
coefficients, we have tacitly introduced a map between analog and digital
signals which is compatible with the inner products on both spaces. We will
investigate this map more closely.

Inequalities
Two fundamental inequalities that hold on inner product spaces are the
Cauchy-Schwarz inequality and the triangle inequality.

1.8 Theorem. IfV is a vector space with inner product (-,-), then for all
z,yeV

(@ 9)| < llllllyll - (1.3)

1.9 Theorem. If V is a vector space with inner product (-,-), then for all
z,yeV,
lz+yll < llzfl + llyll- (1.4)



1.10 Egzercise. Show that each Cauchy sequence in [?(Z) converges in norm
to a square-summable sequence. '

Orthogonality and ‘basis expansions

1.11 Definition. Let V be a vector space with an inner product. We say
that two vectors x,y € V are orthogonal, abbreviated x L y, if (z,y) =0. A
set {e1,e2,...en} is called orthonormal if |le;|| = 1 and (e;,e;) = 0 for all
i # j. We abbreviate this with Kronecker’s §-symbol as (e;,e;) = 0; ;. We
then call {e1,e3,-..en} an orthonormal basis for its linear span. Given an
infinite orthonormal set {ennez, we say that it is an orthonormal basis for
all vectors that are obtained from summing the basis vectors with a square-
summable sequence of coefficients. Finally, two subspaces Vi, Vo are called
orthogonal, abbreviated Vi L Va, if all pairs (x,y) with x € V1 andy € V>
are orthogonal.

1.12 Ezample. Let Vo be the complex subspace of L?([—m,n]) given by
Vo ={f(z) =cicosz + casinz for ¢1,c2 € C}.

Then the set {e1, ez},

1
e1(z) = —=cosz and ex(z) = —=sinz

1( ) \/’7_T 2( ) \/% ’
is an orthonormal basis for Vj. Strictly speaking, a vector in this subspace
specified by ¢; and ¢o is not the function

f(z) =cicosx +cosinz

but the equivalence class of all functions that are equal to f for almost every
x € [—m,w]. However, to simplify notation, we will take the liberty to speak
of each function as if it were the vector given by its equivalence class.

Another subspace of of L2(]0,1]) is the space of functions which are
almost everywhere constant on [0,1/2) and [1/2,1]. It has the orthonormal
basis {¢, 1} with

- swir={ Y

The normalization is straightforward to check. The orthogonality can be
verified by splitting the domain of the integral in the inner product,

1 1/2 1
/Oé(t)¢(t)dt=/0 1dt+/l/2(—1)dt:0.



1.13 Theorem. Let Vy be a subspace of an inner product space V, and
{e1,e2,...en} an orthonormal basis for Vo. Then for allv € Vp,

N
Cu= Z(v,ek>ek.

k=1

Proof. Since {ex}\_; is a basis for Vj as a vector space, we can write

N
v = Z (63X
k=1

with some unique choice of coefficients {«; }j\f:l In order to isolate the value
of each coefficient, we take the inner product with e, k € {1,2,... N}, on
each side of this identity, and use the linearity of the inner product as well
as the orthonormality of the basis,

(v, ek Zaz 61781« =Q.

Orthogonal projections

1.14 Question. What is the result

<U7 €k> €k

(w43
1
M=

&
I
MR

if v & Vp?

1.15 Theorem. Let Vy be an inner product space, Vo an N-dimensional
subspace with an orthonormal basis {e1,ez,...en}. Then forveV,

N
=3 (w exex

j=1

satisfies

for all wg € Vp.



Proof. Since wy = Y& _, Bjex with some coefficients {8k}, and the inner
product is linear, we only need to check that for all indices k,

{v—b,ex) =0."

This is true because of orthonormality of the basis,

N N
(v— Z(U, eer ex) = (v, ex) — Z(v, er)ler,ex) =0.

a

Since the difference vector v — ¥ is orthogonal to Vy, we call ¥ the or-
thogonal projection of v'onto. V.

1.16 Ezercise. Let ¢ and v be the functions in L?([0,1]) as defined in Ex-
ample 1.12. Project the function f(xz) = z onto the space Vp for which ¢
and v form an orthonormal basis.

If a vector z in an inner product space V is perpendicular to all y € Vg,
we write y L Vg or y € V5.

. 1.17 Theorem. Let Vj be a finite dimensional subspace of an inner product

space V.. Then each v € V has o unique way of being expressed as
v =7+ V1,
where vg € Vp and v1 L V. We write V =1 & VE)J-.

Proof. Take v and project orthogonally onto Vy. Let v = v — vg, then
v=1vg+v and v; € VOl by the preceding theorem. Conversely, given vg
and v; with these properties, then vg must be the orthogonal projection of
v onto V. ‘ a

A least squares algofithm

1.18 Theorem. Let Vj be a finite-dimensional subspace of an inner product
space V. Then for any v € V, its orthogonal projection © onto Vo has the
least-squares property

llv— ’6”2 = min |jv — w||2 .
weVy



Proof. Consider for given w € V; the square-distance function
f@) =|o+tw—v|?,teR
Since ¥ — v and w are orthogonal,

f@

= (0 +tw—v,0 +tw —v)
= (0 — v, 9 —v) + t*{(w, w)

=[5 = ol® + 17 w]|?

and the minimum is achieved at ¢ = 0. This means that ¢ is the least squares
approximation. O

1.19 Theorem. Let V' be an inner product space, Vy be o finite-dimensional
subspace spanned by a vector-space basis {z1,za,...2q} Giveny € V, then
its orthogonal projection § onto Vi has the unique expansion

g
§=> oz
k=1

with coefficients {ay}i_, which solve the linear system

q

(oz) =Y onlzw, )

k=1
foralll € {1,2,...q}.

1.20 Theorem. Let V be an inner product space with finite-dimensional,
mutually orthogonal subspaces Vi and Va. Given y € V, then its orthogonal
projection § onto V1 @ Va is § = y1 + y2, where y1 and y2 are the orthogonal
projections onto Vi and Vs.

1.21 Remark. This means that introducing an additional subspace V5 that
is orthogonal to V7 improves the approximation of the vector y by summing
its orthogonal projections onto V3 and V5.

There is no need to re-compute the coefficients for the approximation in
V1 when V5 is introduced.

~



Chapter 2

Fourier Series

Fourier series as expansion in an orthonormal basis

2.1 Exercise. Given Vp C L2([0, ]) which has the orthonormal basis {ej}?zl

of functions e;(z) = 4/2sin(jz). Compute the projection of the constant

function f(z) = C, C € R, onto V.

2.2 Theorem. The set {...,%ﬁc—), COS\/S_:C), %, Sif}%), Siri(/f-rm),...} is an

orthonormal set in L2([—,7]).

2.3 Theorem. If a function is given as a series,

oo}

flz)=ao+ Z(ak cos(kx) + by sin(kx))
k=1

which converges with respect to the norm in L?([—m, ), then

1 T
a0 = 5 » f(z)dz,
1 T .
an = — f(z) cos(nz)dzx,

and
1 ™
by = — f(z)sin(nz)dz.
™ -7

2.4 Theorem. If f is an even, square integrable function given in the form

of a series as in the preceding theorem, then b, = 0 for alln € N. If f is
odd, then an, =0 for alln € N.

10



2.5 Ezercise. With the help of a change of variables, y = a + (b — a)z/(27),
find an expression for the coefficients of

f(x) = a0+ Y (axcos(2rkz/(b — a)) + by sin(2rkz/(b - a))) -
k=1

For an integrable function f on [—n, 7], one could define the coefficients
{a,}22, and {b,}2; as in Theorem 2.3. The question is then: Does the
Fourier series with these coefficients converge, and in which sense?

Types of convergence

Identifying vectors in L?([a,b]) with functions motivates several different
notions of convergence.

2.6 Definition. A sequence {f,}2; in L?([a,b]) converges in the square
mean to f € L%([a,d]) if | fn — || = 0. The convergence is pointwise if
for all t € [a,b], limp—eo fn(t) = f(t). It is uniform if

sup |fn(z) — f(z)] = 0.

z€[a,b]

2.7 Ezercise. Find sequences of functions on [0, 1] with either of the following
convergence properties

1. f, — 0 in the square mean, but not pointwise.
2. fn — 0 pointwise, but not in the square mean.
3. fn — 0 pointwise and in the square mean, but not uniformly.

2.8 Ezercise. Does the sequence of functions {f,}52; with values fn(z) =
nz™e~™ for z € R converge uniformly on [—x, 7]?

Convergence of Fourier series

2.9 Lemma. If f is piecewise continuous and bounded on [a,b], then

b
T lm /b f(z) cos(kz) dz = klilﬁlo/ f(z)sin(kz)dz = 0.

k—oc0

11



2.10 Theorem. Assuming f is 2w-periodic, piecewise continuous and bounded,
and f'(x) exists for some z € [—m, |, then the Fourier series

N oo )
Sn(z) =ag+ (ax cos(kz) + by sin(kx))
k=1 k=1

converges to
lim Sy(z) = f(z).

N—oo

2.11 Theorem. Assuming f is 2w-periodic, piecewise continuous and bounded,
left and right differentiable at z € [—m, 7|, then the Fourier series

N oo

Sn(z) =ao+ » > (axcos(kz) + by sin(kz))

k=1k=1

converges to .
Jim Sn(z) = 5(lim f(t) + lim f(2))
What if we do this for a function f which is only defined on [—7, 7],
which is left differentiable at 7 and right differentiable at —77? The series
then converges to the periodic extension of f.

2.12 Definition. The periodic extension of f defined on [—m,m) is the
function g such that g(z) = f(z) for —m < z < 7 and g(z + 27) = g(z) for
all x € R.

2.13 Ezercise. Compute the Fourier coefficients for f(z) = z on [—w,m).
verify that at the jump discontinuity, the Fourier series converges to the
average of the left and right hand side limits.

Uniform convergence

2.14 Remark. Since each partial sum of a Fourier series is a trigonometric
polynomial (a continuous function), if the Fourier series converges uniformly,

- then the limit is also a continuous function.

This is the motivation for studying uniform convergence.

2.15 Theorem. If the Fourier coefficients {an,bn} of a function satisfy

(o0}

B Zﬂan["‘lbn[) <o

n=1

then the series converges uniformly.

12



2.16 Corollary. If f is periodic, continuous, twice continuously differen-

tiable on (—m,7) and f" is a bounded function,

sup | f"(x)] < M, M >0

z€[—,7]

then the Fourier series of f converges uniformly to f.

Convergence in square mean

2.17 Theorem. Let f be square integrable on [—m, ], then the partial sums

of the Fourier series

N oo

Sn(z) =ao+ Z Z(ak cos(kx) + by sin(kz))

k=1 k=1

converge in square mean to f,

im [ |(f - Sn)(@)2dz = 0.

N—oo J_»

2.18 Theorem. Let f be square integrable on [—m, 7], and
[ee]
f(z) =ao+>_(axcos(kz) + by sin(kz))
k=1

then we have the equality

L /_W |(2)[2dz = 2lao + 3 (laxl? + [bx[?)

s
=1

In complex notation, if

then .
1 /7 : s
= | f@Pde= 3 |l
™ -7
k=—00

2.19.Corollary. If f and g are square integrable on [—m, 7],



and

g(z)= Y Bree

then -
(fg)=2m > onbs.

k=—0c0

Thus, the map from L?([—,7]) to I2(Z) which maps a function f to its
Fourier coefficients preserves inner products.

Gibbs phenomenon

2.20 Ezercise. Consider the function

T™—1, 0<z<m
f(:c)—{ —nr—z, —7T<z<0

1. Compute the Fourier series of f.

" 2. Denote the Nth partial sum of the Fourier series by Sy, and let
gn(z) = Sy(z) — f(z). Using the formula for the Dirichlet kernel,

show that gy (z) = %

3. Compute the value of gy at the first critical point to the right of z = 0.

4. Express the limit of this value as N — oo in the form of an integral.

Step-function approximation

2.21 Definition. We call intervals of the form [k277,(k+1)277), k€ Z
half-open, dyadic intervals. For j € Z, let V;([0,1]) denote the space of
functions which are constant on each dyadic interval of length 277 contained
in [0,1]. If we identify each function in V;([0,1]) with all the functions
that are almost everywhere equal to it, then we can think of V;([0,1]) as a
subspace of L*([0, 1]). '

2.22 Proposition. Let f be a square integrable function on [0,1]. The
projection P;f onto V;([0,1]), j € {0,1,2,...} is specified by the values
(k+1)2-7

Pif(k277) = 27‘/ fz)dz,0 <k <2/ —1.
© Jk2—7

14



IR |

2.28 Remark. The approximation of f by P; f amounts to piecewise averag-
ing of f on dyadic intervals of a given length. For this reason, there are no
overshoots, and there is no Gibbs phenomenon! The price we pay is that
P; f is not continuous, unless f is constant.

One could ask if there is a way to preserve smoothness and avoid the
occurrence of the Gibbs phenomenon. We will see a way to approximate
functions by projecting on spaces with a degree of smoothness that can be
chosen to be “between” that of the piecewise constant functions and the ban-
dlimited ones. These approximation spaces will be discussed in the chapter
on multiresolution analysis. Numerical experiments with these approxima-
tions show that an increase in the smoothness of these spaces leads to a
re-emergence of the Gibbs phenomenon.

15



Chapter 3

Fourier Transform

Definition and elementary properties

8.1 Fact. If f € L*(R), then

7 L —iwt
for = Jim —= [ fea

exists for almost all w € R, that is, up to a set which does not count under
the integral. Moreover, f € L?(R) and

again, up to a set of ¢ € R which does not count in integrals.

3.2 Theorem (Plancherel). Let f,g € L*(R). Then denoting F{f] = f and
Flg] = g, we have
(FIfl,9) = (f,F*[g])
8.3 Corollary. Choosing g = F[h], h € L?(R), we obtain
(FIf), FlR]) = (f, FF[R]D) = (£, h) -

So, we have preservation of the norm and, by the polarization identity, of
the inner product under the Fourier transform,

- IFLAIZ = 1£17-
roposition. Let f,h € L*(R), h(t) = f(bt) for b > 0. Then h{w) =

16



3.5 Frample. If

0, else

f(t):{ 1, —n<t<m

then h(t) = f(bt) has the Fourier transform

A(w) = \/gsin(zw/b) .

3.6 Proposition. Let f,h € L2(R), h(t) = f(t — a) for some a € R. Then
hw)=e™2f(w).

3.7 Proposition. Let f € L2(R). If f is even, then so is f. If f is odd,
then the same holds for f.

Sampling and reconstruction

3.8 Definition. A function f € L*(R) is called Q-bandlimited if f(w) =
for almost all w with |w| > €.

3.9 Remark. From Parseval’s identity, f € L?(R), and by f vanishing outside
of [, Q], the inequality | f(w)| < 3 + |f(w)|? implies

¢ ‘ “ 1 a2 _9_ 2112
| o< [ G IF@Bde =5 + AP < oo

which means f is (absolutely) integrable.
A consequence of this fact and the Fourier inversion is that

i £(5) = i / Fw)erdu = / Fe)etd = £(2),

by uniform convergence of €% — €** on [, Q). This means that f, unlike
the usual vectors in L?(R), can be interpreted as a continuous function.

3.10 Theorem. Let f € L*(R) be Q-bandlimited. Then

Z f k7r sin(Qt — km)
Qt — kr

—

k=—o0

and the series on the right-hand side converges in the norm of L?(R) and
uniformly on R. ‘

17



Convolutions and filters

3.11 Definition. Let f,g € L*(R). Then we denote the convolution of f
and g by : Co

(Fx9® = [ -3
3.12 Example. Take

_J1/a, 0<z<a
g(x)—{ 0, else

then for any integrable (or square-integrable) f,

(f *9)(t) = /O " ft - 2)dw = [ @,

3.13 Theorem. Let f,g be integrable functions on R. Then f * g is again
integrable and F[f x g] = /27 f§. X
If, in addition f,g € L*(R), then F~1[f§] = #f *g.

.14 Remark. Convolving with an integrable function g on R amounts to
multiplying with /27§ in the frequency domain.

3.15 Definition. A filter on L?(R) is a linear map L : L?>(R) — L*(R) for
which there is a bounded function m on R such that for all f € L?(R),

F[Lf]=m§,

or equivalently, A
Lf = Flmf].
The function m is called the system function of the filter.

3.16 Definition. A linear map L on L2(R) is called time invariant if for
all f,g € L*(R) which are related by a time shift, g(z) = f(z — a) with a
constant a € R,

Lg(:c) =Lf(z—a).

In short, it does not matter in which order L and the time shift are
applied.

3.17 Proposition. All filters on L*(R) are time invariant linear maps.

18



3.18 Definition. We say that a filter Ly which acts on a function f by
convolution with an integrable function h has an impulse response h. If
h(t) =0 for all t <0, we call Ly, a causal filter.

3.19 Remark. For a causal filter with integrable impulse response h, we note
that if a signal f(¢) vanishes for all ¢ < to, then so does

Lnf@) = £ 200 = [ b= )i [ h-a)e+a)ds

—oQ

because h(—z) = 0 when z > 0 and otherwise f(¢t-+z) = 0 because t+z < tg.

So, the filtered signal responds to the input, it never anticipates. The
design of analog devices (e.g., RLC-circuits) can only provide causal filters.
Digital signal processing (see the section “From analog to digital filters”
below) has opened the possibility of using non-causal filters which are applied
to a digitized (sampled) signal.

3.20 Ezercise. Find the system function m for the filter

1

Li@t)=(f@) + f(t—a)), a€R.

3.21 Definition. A low-pass filter on L2(R) is a filter with system function
m which has the limits

limm(w)=1and lim m(w)=0.
w—0 w—too

3.22 Ezample (Ideal low-pass filter). Let the system function of a filter be

given by
m(w) = 1, w <0
T 10, else

What is the impulse response of this filter? We compute
Lnf = f*h thus F[L,f] = V2nfh
so b= —‘/15_; and applying the inyer'se Fourier transform gives
1 Q

€ty = —— sin(QF)

h(t) = 57—1'— -Q WQt

which is not integrable, but we can write

fxh(t) = /_Z f(x)msm(@(t o)) dz

19



because f and h are in L?(R), and so the “convolution” is pointwise defined.
The fact that f = h € L?(R) is easy to see via the Plancherel identity, but
not obvious in the point-wise expression as convolution.

One could investigate what happens when Q — co.

3.23 Exercise. Is there a square-integrable function h such that fxh = f
for all f € L2(R)?

3.24 Ezample (Butterworth filter). The system function

is associated with

Qe t>0
h(t>:{ 0, t<0

which is the impulse response of a causal filter of the Butterworth type.
Another example of a filter of this type has the system function

1 1
128 -2 i (1481444 - &

m(w)

which has absolute value

()] = ——

VI— Wb/

The defining properties of a Butterworth filter are the following:
1. The filter is causal.
2. The system function is the inverse of a (complex) polynomial.
3. ImW)? = m for some n € N, Q > 0.

Asn — o0, the System function approaches that of an ideal filter!

From analog to digital filters

We now examine filtering for bandlimited signals. Given a filter with a
system function m and a bandlimited function f, can we express the sampled
values of Lf in terms of those of f7
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3.25 Remark. For filtering an Q-bandlimited function, only the restriction
of the system function m to [—Q, Q] matters, because f vanishes outside of
this interval. ‘ A

We can thus expand m in a Fourler series,

— —imkw /2
= e,

keZ

where we have changed the sign in the exponent because it is a series for a
function on the frequency domain.

3.26 Theorem. Given an Q-bandlimited function f and a filter L with sys-
tem function m whose restriction to [—Q, Q] has Fourier coefficients {o trez.-

Then
flmy = 3o b

l=—00

The upshot is that the convolution is replaced by a series formula for the
sampled values of f.

3.27 Definition. For two sequences ©,y € 12(Z), we define the discrete

convolution as
[o.0]

3.28 Remark. If a (bounded) system function has a large number of contin-
uous, square integrable derivatives then the impulse response decays fast.
However, when implementing this filter digitally, that is, for 2-bandlimited
functions, then the decay of the coefficients {oy } depends on the smoothness
of the periodization of m restricted to [—2, Q.
For this reason, often filters are modified by smoothing the periodization
around +£2.
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Chapter 4

"Haar Wavelets

Spaces of piecewise constant functions

We begin with the observation that functions that are constant on all inter-
vales [n,n + 1), n € Z, can be written as the pointwise convergent series

(e}

f)= > axd(z—k)

k=—o0

where
1, 0<z<1

¢(x) = { 0, else

4.1 Definition. We define the space of square-integrable integer-wide step
functions as

oo}

L ={@= Y adlz—k),ac (D).

k=—o00
4.2 Ezercise. We'remark that the translates {¢(-— k) }xez form an orthonor-
mal basis for Vp. oo

4.8 Question. Knowing the values of a function f at one point in each
interval [k, k + 1) determines the function completely. How can we have
a function space with more details?

4.4 Answer. Take {2//2¢(272 — k)}rez as an orthonormal basis instead of

{¢(z — k) }rez-
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4.5 Definition. The space of square-integrable step functions of width 277,
denoted by V;, is the subspace of L*(R) with the orthonormal basis

(292425 — k) ez .

4.6 Remark. Functions in this space have possible discontinuities at z =
279k, k € Z. This implies that sampling the function values at 27 evenly-
spaced points in the interval [k, k+ 1) determines the function on this inter-
val.

We also note that for j > 0, we have the inclusions V_; C V_;4; C ---
‘ C%CWC---C‘G-1CWCW+1.

4.7 Proposition. For any square integrable function f, f € Vi if and only
if f(27z) € V;, or equivalently f € V; if and only if f(2772) € Vj.

4.8 Question. Is there an orthonormal basis for layers of detail? We would
like to have a basis of translates for Vi N VE)J-.

Try
P(z) = ¢(22) — $(2z — 1)

/_Z d(z)(z)dx = /01/2 1dz — /1/12 1dz=0

and because 1 is supported in [0, 1], it is orthogonal to all ¢(z — k)!

Indeed, the translates of ¢ form a basis for the detail spaces that bridge
between Vp and V1. More generally, we can define a subspace of V1 which
is orthogonal to V.

then

4.9 Theorem. Let W; be the span of all functions in L*(R) such that

f)=> axp(@z—k).

. keZ

Then Wj = V- N V1.

Haar decomposition

Now we can perform a recursive splitting. Each f; € V; is expressed uniquely
as the sum

i =wi-+ fi
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where w;j—1 € Wj_1 and fj_1 € V;_;. This orthogonal splitting is abbrevi-
ated by '
Vi=Wj18 V1.

Tterating the splitting gives
Vi=Wj—1 @& W;—2 8 Vj—

and so on.

If instead we let § — oo and keep the last term in this direct sum
decomposition fixed, say Vp, then we obtain a unique representation of each
vector as a series of vectors from Wj, j > 0, and V4.

4.10 Theorem. For each f € L?(R), denote by w; the orthogonal projection
of f onto W;. Then

[ee)
F=fo+ > w
j=0
with vectors that are orthogonal and a series that converges in norm. In
short,
LPR)=VooWoo Wi We & -

4.11 Question. Suppose we have f;(z) = > .z axd(2/z — k), given by the
values {ar}. How do we compute the coefficients with respect to the or-
thonormal basis of V; given by

{6(z — k) }rez and {27292z — k) hrez,0ci<j1?
4.12 Lemma. For the Haar scaling function ¢ and the wavelet 1,
) 1 . .
$(@z) = (W@ 2) + 42 12))

and

b 1) = (627 2) — p(212).

So we can use this to convert Y-, axd(2/z—k) € V; into Y-y (cxd(27 1z —
k) + dep (21 — K)).
4.18 Ezercise. Show that

#(z) = 26(42) + 26(4x — 1) + ¢4z — 2) — B4z — 3) = 26(23) + (22— 1)
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4.14 Theorem. Given a square integrable function

f@) =Y aP¢@z~k)
k

then
fi@) =Y 00 D@ e — k) + Y ol Ve 1z — k)

k k

with " i
p(-1) _ 3k ~ %5k
g1
2

and

() (7)
(G-1) _ Gk T 0ok
a/k _— e e——.
2
We note that both of these expressions are obtained from a digital filter
applied to {a? )}leZ~
We can repeat this procedure iteratively to obtain a coefficient tree con-

taining {b;(cj)}keZ; {bg_l)}kez, {b,(gj_m}kez, ...and finally {a](cO)}keZ'

Filters and diagrams

4.15 Definition. For any sequence {zx xez and {hy}rez, both in £2(Z), we
define the digital/discrete filter of by

(H.’E)k = (h * x)k‘ = Z Th—nhn -
neZ

4.16 Definition. The downsampling operator D acts on a square-summable

sequence {Tk trez by
(Dz)g = zog -

With these two operations, we can express the analysis and reconstruc-
tion algorithm.

4.17 Remark. Let
and let

25



Then

and

Therefore,

and

1 1
(Hz) = (h*xz)p = §$k - 51‘k+1

1 1
(L) = (I*2)p = 5%k + STht1 -

iy 1,4 ; ;
7 = 3065 — ) = (DHaO),

a,(cj_l) = (DLCL(J))k .
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